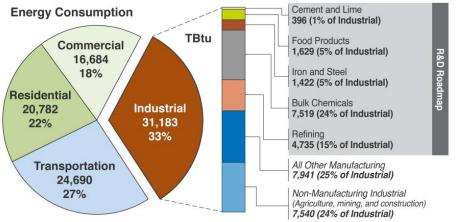
Beneficial Electrification Industrial Heat

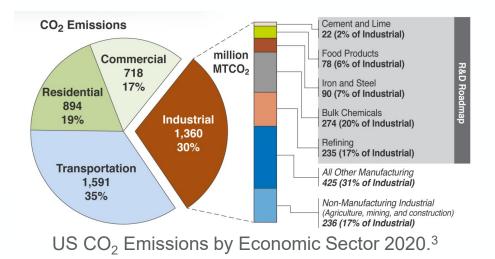
Jim Gafford Assistant Director of Research, Power Management

Electrification of Industrial Processes

- US DOE Industrial Decarbonization Roadmap provides clear insight into the impact of broad economic sectors on energy utilization and green house gas emissions.¹
 - Significant components of industrial energy inputs can be decarbonized through electrification technological solutions.
 - Process heat represents an outsized component of industrial energy usage
 - Numerous large-scale industries in the Carolinas rely upon natural gas fired heat generation for manufacturing processes.
 - Pulp and paper
 - Food and beverage
 - Chemical production
 - Electrification of process heat represents a near term technology application that can dramatically reduce CO₂ emissions.
 - Positive environmental impact of industrial electrification relies upon clean electrical energy sources at economically competitive cost.



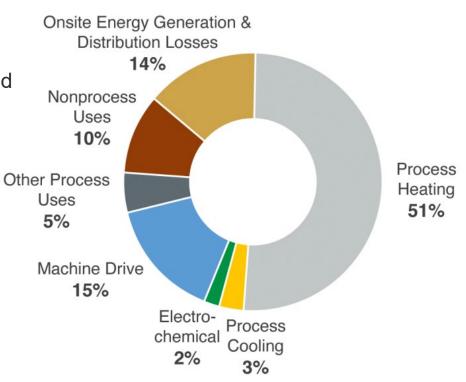
Energy Consumption


The industrial sector of the US economy accounts for 1/3 of all US energy consumption

- Subsectors within DOE R&D Roadmap account for 15.7 Quadrillion Btu (4600 TW-H)
- Over 50% of all manufacturing energy is used by two subsectors.
 - Chemical processing
 - Food and Beverage

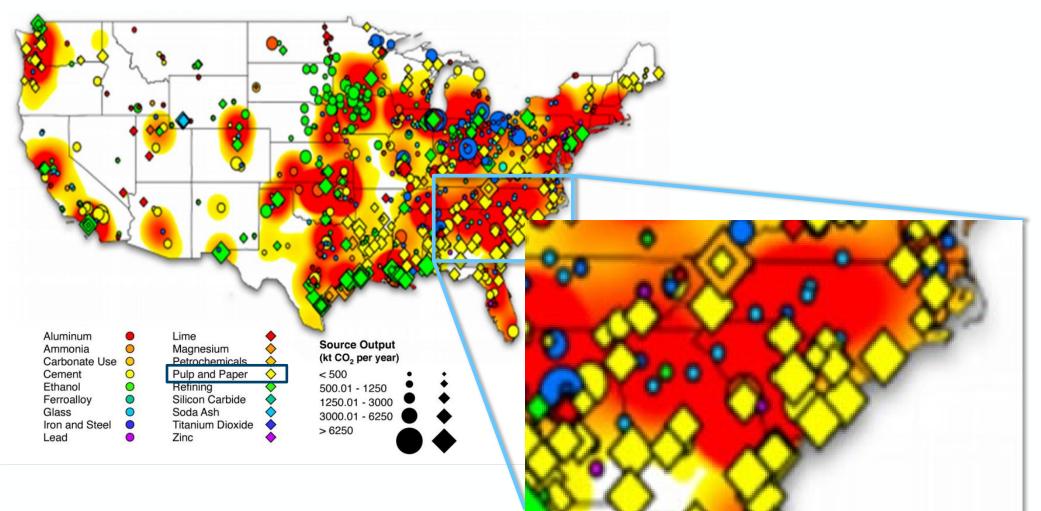
The industrial sector of the US economy is responsible for 30% all CO_2 emissions.

US Energy Consumption by Economic Sector 2020.³


^{3. &}quot;Annual Energy Outlook 2021 with Projections to 2050," U.S. Energy Information Administration, February 3, 2021, https://www.eia.gov/outlooks/archive/aeo21/. See Table 19. Energy-Related Carbon Dioxide Emissions by End Use.

Process Heating

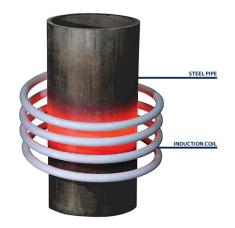
The magnitude of process heat energy use and its carbon footprint makes process heat a major opportunity for low-carbon solutions.


- Over 50% of all manufacturing energy is used for process heating.⁴
 - In 2018, a total of 7,576 trillion Btu of fuel, steam, and electric energy were consumed for process heating.
 - less than 5% of these operations are electrified.
- Process heating accounted for 360 million metric tons of CO₂e GHG emissions
 - 31% of the manufacturing sector's total energyrelated emissions.⁴

3. "Manufacturing Energy and Carbon Footprint: All Manufacturing (2018 MECS)," U.S. Department of Energy Advanced Manufacturing Office, December 2021, https://www.energy.gov/sites/default/files/2022- 01/2018_mecs_all_manufacturing_energy_carbon_footprint.pdf.

Impact on the Carolinas

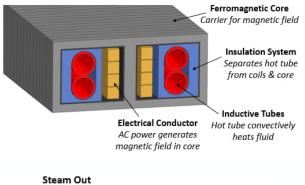
Distribution of CO₂ Output by Industrial Subsectors – 2017⁴

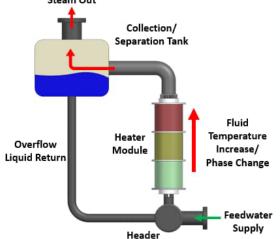

Successful applied research and development partnerships between industry and academia have defining features.

- Targeted return on investment 1.
 - Well defined business case
 - Techno-economic justification Alignment with funding agency goals ٠
- Technical expertise in depth 2.
- 3. Well defined deliverables
- Well defined division of labor 4
- 5. Established relationships

Decarbonization of Process Steam through Electrification of Heating

- US DOE Office of Efficiency and Renewable Energy (EERE)
 - Industrial Efficiency and Decarbonization
 - FOA 0002840
 - Topic Area 5: Decarbonization of Paper and Forest Products
 - Inductively Coupled Electrified Steam Generator
 - 5 MW pilot demonstrator
 - Scalable to 1 GW
 - Single case study installation in 2021 accounted:
 - 247 GW-hrs of natural gas steam production in 2021
 - > 1,000,000 metric tons CO2
 - Siemens Energy, Inc. Prime Award Recipient
 - Bob Warren, Siemens Energy Principle Investigator
 - Jim Gafford, UNC Charlotte
 - Dr. Jay Kapat, University of Central Florida





Decarbonization of Process Steam through Electrification of Heating

- Tier 2 Project: TRL 6 to 7
 - Pilot scale technology in a relevant environment
 - Phase 1: R&D
 - Heater Conceptual Development Siemens Energy
 - System Thermal Modeling UCF
 - Power and Control System Development UNC Charlotte
 - Phase 2: Design and Test
 - Heater Prototype Fabrication Siemens Energy
 - Power and Control System Design UNC Charlotte
 - Phase 3: Installation and Demonstration
 - Installation with industry partner at an operational facility

Beneficial Electrification Assumes Decarbonized Generation

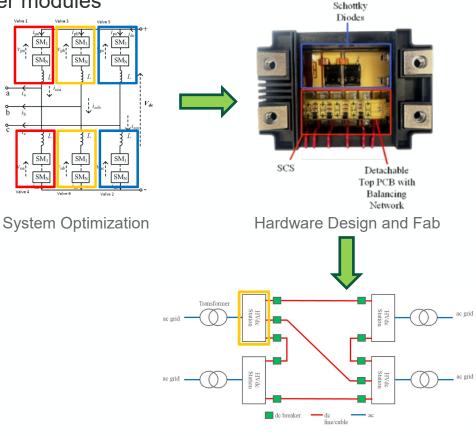
High Voltage DC Transmission - How to Land Offshore Wind

- HVDC Voltage Source Converters are being deployed to connect offshore wind production to the onshore grid.
- Valve halls using incumbent technology are problematic in scale.
- Incumbent IGBT technology is gaining traction in adoption.
- Significant technology advancements will be made to de-risk these systems this decade.

A Hitachi Energy HVDC VSC hall⁵

Low Cost ,High-Performance, Reliable, Modular, and Scalable Power Electronic Valves for HVDC Converters

- US DOE Office of Efficiency and Renewable Energy (EERE)
 - Innovative DEsigns for high-performAnce Low-cost HVDC Converters (IDEAL HVDC)
 - FOA 0003141
 - Topic Area: HVDC Voltage Source Converters
 - Scalable Supercascode SiC JFET Modules and Cells for HVDC Converter Optimization
 - Pareto Analysis of Optimal 320 kVDC Converter Leg
 - 20 kVDC Supercascode SiC JFET Module
 - 40 kVDC NPC Converter Cell
 - UNC Charlotte Prime Proposing Agency
 - Dr. Madhav Manjrekar, UNC Charlotte Principle Investigator
 - Dr. Pete Losee, Qorvo
 - Dr. Andrew Lemmon, University of Alabama
 - Brandon Meier, TNEI



Low Cost ,High-Performance, Reliable, Modular, and Scalable Power Electronic Valves for HVDC Converters

- Develop and demonstrate scalable HVDC converter modules
 - Task 1: System Optimization Study
 - Identify system parameters
 - Develop cost function
 - Identify pareto-optimal designs
 - Task 2 & 3: Design and Fabrication
 - Supercascode module design
 - MMC cell design
 - Proof of concept hardware prototype
 - Task 4: Characterization and Evaluation
 - Module performance characterization
 - Converter cell demonstration
 - Task 5: Techno-Economic Impact
 - System cost/performance impact
 - BOP considerations
 - Site impact

System Impact